SYNTHESIS OF O- β -D-GALACTOPYRANOSYL-(1 \rightarrow 4)-O-(2-ACETAMIDO-2-DEOXY- β -D-GLUCOPYRANOSYL)-(1 \rightarrow 2)-D-MANNOSE AND ITS INTERACTION WITH VARIOUS LECTINS

ROKURO KAIFU AND TOSHIAKI OSAWA

Division of Chemical Toxicology and Immunochemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo 113 (Japan)

(Received April 26th, 1976; accepted for publication, June 25th, 1976)

ABSTRACT

2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- α -D-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- α -D-glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 2)-3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O- β -D-galactopyranosyl-(1 \rightarrow 4)-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 2)-D-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against *Phaseolus vulgaris* hemagglutinin.

INTRODUCTION

Recent investigations have revealed that two types of sugar chains are present in the major sialoglycoprotein of human erythrocytes $^{1-3}$: One is the "mucin-type" having an O-glycosyl linkage to a serine or threonine residue and the other is the "serum glycoprotein-type" having a glycosylamine linked to an asparagine residue. The latter sugar chain has been found to contain the O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 2)$ -D-mannopyranose sequence⁴. This report describes the synthesis of the trisaccharide O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 2)$ -D-mannose (7) and the use of this trisaccharide and related mono- and disaccharides as hapten inhibitors against various lectins.

180 R. KAIFU, T. OSAWA

RESULTS AND DISCUSSION

5

2-Acetamido-2-deoxy-4-*O*-β-D-galactopyranosyl-D-glucose (1) can be easily prepared from lactose and 2-acetamido-2-deoxy-D-galactose by means of a crude enzyme from Bifidobacterium bifidum var. pennsylvanicus by the method of Zilliken et al.5, and the condensation of the fully acetylated oxazoline derivative of this disaccharide with a partially protected p-mannose derivative was attempted. 2-Acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-glucopyranose⁶ (2) was treated with acetic acid-acetic anhydride saturated with hydrogen chloride, and the resulting 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- α -D-glucopyranosyl chloride (3) was converted into 2-methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl)-\(\alpha\)-p-glucopyrano]-\([2,1-d]\)-2-oxazoline (4) by the method of Khorlin et al. 7. Condensation of 4 with 3,4:5,6-di-O-isopropylidene-p-mannose dimethyl acetal8 (5) in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2-acetamido-3.6-di-Oacetyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 2)-3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (6) in 8.6% yield. The β configuration of the linkage formed by this reaction was confirmed by n.m.r. spectroscopy (doublet at τ 5.37, $J_{1,2}$ 9 Hz). The O-acetyl, isopropylidene, and methyl acetal groups of 6 were removed by catalytic deacetylation with sodium methoxide, followed by hydrolysis with dilute sulfuric acid to give amorphous $O-\beta$ -D-galactopyranosyl- $(1 \rightarrow 4)$ -O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 2)$ -D-mannose (7).

The results of hemagglutination inhibition assays of 7 and other related sugars against several lectins are listed in Table I. Compound 1 did not show significant

7

6

TABLE 1
HEMAGGLUTINATION INHIBITION OF LECTINS

Sugars	Lectinsa					
	L. culinaris	Concanavalin A	P. vulgaris	R. communis	W. floribunda B. purpurea	B. purpurea
β-D-Galp-(1→4)-β-D-GicNAcp-(1→2)-D-Man	9.2	37	81	2.3	Ξ	Ξ
B-D-Galp-(1→4)-D-GlcNAc	> 52	>52	>104	3.3	1.6	1.6
β-D-GlcNAcp-(I→2)-D-Man	0.8	8.0	48	> 48	>48	^ 48
D-Galactose			> <u>=</u>	28	14	1.7
D-Mannose	4	4	>100	> 100	>100	> 100
Phenyl α-p-galactopyranoside			77	18	9.2	9.0
Phenyl \(\theta\)-p-galactopyranoside			>74	4.6	9.2	9.0
Methyl a-D-galactopyranoside			>103	52	6.4	8.0
Methyl B-D-galactopyranoside			>103	13	13	8.0
2-Acetamido-2-deoxy-p-galactose			^ ^	^8	0.4	0,4

"Minimum concentration (µmol/ml) completely inhibiting 4 hemagglutinating doses.

182 R. KAIFU, T. OSAWA

inhibitory activity against *Phaseolus vulgaris* hemagglutinin, but its linkage to O-2 of D-mannose to give 7 resulted in strong inhibitory activity. This finding shows that the D-mannose residue is essential for the inhibitory activity, although D-mannose itself is not an inhibitor against this lectin. The D-galactose residue at the nonreducing end of 7 is also important for the hapten inhibitory activity against *P. vulgaris* hemagglutinin, as 2-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-D-mannose⁹ has much weaker inhibitory activity (Table I). These results are in good agreement with previously reported results $^{10-12}$ obtained by hemagglutination inhibition assays with various glycopeptides and their sequential degradation products as hapten inhibitors, and they confirm that *P. vulgaris* hemagglutinin recognizes the O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 2)$ -D-mannose sequence.

Ricinus communis hemagglutinin was more effectively inhibited by 1 or 7 than by both anomers of methyl or phenyl D-galactopyranoside (Table I). Contribution of the D-mannose residue of 7 to the inhibitory activity against this lectin may be small, as the inhibitory activity of 7 is almost the same as that of 1. These results support the assumption $^{1.3}$ that this lectin primarily recognizes the 2-acetamido-2-deoxy-4- $O-\beta$ -D-galactopyranosyl-D-glucose sequence at the cell surface.

In contrast, 2-acetamido-2-deoxy-D-galactose and both anomers of methyl or phenyl D-galactopyranoside were stronger inhibitors against *Bauhinia purpurca* hemagglutinin than 1 or 7. The presence of a 2-acetamido-2-deoxy-D-glucose residue in penultimate position to the nonreducing, terminal β -D-galactopyranosyl group seems to decrease significantly the inhibitory activity against *B. purpurca* hemagglutinin.

Wistaria floribunda hemagglutinin was inhibited to the highest degree by 2-acetamido-2-deoxy-D-galactose, but 1 and 7 also showed an inhibitory activity stronger than that shown by both anomers of methyl or phenyl D-galactopyranoside. Therefore, the presence of a 2-acetamido-2-deoxy-D-glucose residue in penultimate position to the terminal β -D-galactopyranosyl group rather enhances the inhibitory activity against W. floribunda hemagglutinin.

It was previously reported⁹ that 2-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-D-mannose is a good inhibitor against both Lens culinaris hemagglutinin and concanavalin A. However, as shown in Table I, the substitution at O-4 of the 2-acetamido-2-deoxy-D-glucopyranose residue by a β -D-galactopyranosyl group significantly decreased the inhibitory activity against these D-mannose-binding lectins.

EXPERIMENTAL

General. — Melting points were taken on a hot stage equipped with a microscope, and are not corrected. Specific rotations were determined, in a semimicro polarimeter tube (length 1 dm), with a Zeiss polarimeter having a scale reading to 0.01°. I.r. spectra were recorded with a JASCO DS-402 G spectrophotometer, and n.m.r. spectra with a JEOL JNM-PS-100 spectrometer, with Me₄Si as the internal

standard. The silicic acid used for chromatography was Wakogel C-100 [100 mesh; Wako Pure Chemical, Tokyo), used without pretreatment. The ratio of weight of substance to weight of silica gel was 1:100. The ratio of diameter of the column to its length was 1:20. The activated charcoal for column chromatography was Shirasagi activated charcoal (Wako Pure Chemical, Tokyo). T.l.c. was performed on precoated Silica Gel G plates (layer thickness 0.25 mm; E. Merck, Darmstadt, Germany); the solvent travel-distance was ~ 6 cm. The spots were detected by spraying the chromatogram with 1:1:18 (v/v) anisaldehyde-conc. H_2SO_4 -ethanol. Evaporations were conducted in vacuo, with a bath temperature below 40° , unless stated otherwise. Microanalyses were performed by the Central Analyses Laboratory, Faculty of Pharmaceutical Sciences, University of Tokyo.

Lectins. — Concanavalin A from jack bean (Sigma Chemical Co., St. Louis, MO 63178) was purified according to the method of Agrawal and Goldstein¹⁴. The P. vulgaris hemagglutinin used in this study was the fraction E-PHA obtained from Bacto-phytohemagglutinin M (Difco Laboratories, Detroit, MI 48232) by the method previously described¹⁵. L. culinaris hemagglutinin¹⁶, R. communis hemagglutinin¹⁷, B. purpurea hemagglutinin¹⁸, and W. floribunda hemagglutinin¹⁹ were purified from the corresponding seeds according to the methods previously described.

Sugars. — 2-Acetamido-2-deoxy-4-O- β -D-galactopyranosyl-D-glucose was emzymically synthesized according to the method of Zilliken et al. 5.2-O-(2-Acetamido-2-deoxy- β -D-glucopyranosyl}-D-mannose was synthesized by the method previously described. Methyl α - and β -D-galactopyranoside were synthesized by the method of Austin et al. 20. D-Galactose, 2-acetamido-2-deoxy-D-galactose, and phenyl α - and β -D-galactopyranoside were purphased from Nakarai Chemical Co. (Tokyo, Japan).

Hemagglutination assays. — Titration and inhibition assays with human envitorcytes freship obtained from a donor were performed according to the method previously described²¹.

2-Acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl- β -D-galacto-pyranosyl)- α -D-glucopyranosyl chloride (3). — A solution of 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- α -D-glucopyranose⁶ (2, 6 g) in 2:1 (v/v) acetic acid-acetic anhydride (100 ml) was saturated with dry HCl at 0°, and kept at room temperature for 24 h. The solution was saturated again with dry HCl at 0° and kept at room temperature for further 24 h. After dilution with dichloroethane (400 ml), the solution was washed once with water, twice with an ice-cold saturated solution of NaHCO₂, and finally with water. The solution was dired (Na₂SO₄), and the crystalline residue obtained after evaporation of the solvent was recrystallized from ethyl acetate-ether to give 4.9 g (85%) of 3, m.p. 135–138°, [α]_D²⁰ +62° (c 1.0, chloroform).

Anal. Calc. for $C_{26}H_{37}CINO_{16}$: C, 47.7; H, 5.7; N, 2.1. Found: C, 47.8; H, 5.5; N, 2.2.

2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl- β -D-galacto-pyranosyl)- α -D-glucopyrano)]-[2,1-d]-2-oxazoline (4). — A solution of 3 (4.9 g) in dry acetone (30 ml) was added dropwise to a suspension of AgNO₃ (2.8 g) in a mixture

184 R. KAIFU, T. OSAWA

of 2,4,6-trimethylpyridine (8 ml) and dry acetone (40 ml), and the solution was stirred for 1 h at room temperature. The solution was diluted with dichloroethane (200 ml), filtered, and the filtrate was evaporated. The residue was dissolved in dichloroethane (200 ml), successively washed with cold, saturated NaHCO₃ solution and water, dried (anhydrous K_2CO_3), and evaporated. The residue was treated with a mixture of ether and petroleum ether to give 3.9 g (85%) of 4 as an amorphous powder showing on examination by t.l.c. on silica gel with ethyl acetate only one spot (R_F 0.43), $[\alpha]_D^{20} + 17^\circ$ (c 1.1, chloroform); i.r.: v_{max}^{KBr} 1672 (C=N) and 1748 cm⁻¹ (C=O); lit.²²: $[\alpha]_D^{21} + 15^\circ$ (c 1.0, chloroform).

Anal. Calc. for $C_{26}H_{36}NO_{16} \cdot H_2O$: C, 49.1; H, 6.0; N, 2.2. Found: C, 49.1; H, 5.7; N, 2.1.

O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-(1→4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy- β -D-glucopyranosyl)- $(1\rightarrow 2)$ -3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (6). — To a solution of 3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (5, 3.9 g) and 4 (3.9 g) in dry 1:1 (v/v) toluene-nitromethane (30 ml) was added sufficient p-toluenesulfonic acid to adjust the pH of the solution to 4. The solution was heated for 40 min at 110°, and then evaporated under diminished pressure. The residue was dissolved in chloroform (120 ml), successively washed with cold, saturated NaHCO₃ solution and water, dried (anhydrous Na₂CO₃), and evaporated. The brown syrup obtained was chromatographed on a column of silica gel with 97:3 (v/v) chloroform-ethanol; the fractions having R_F 0.21 in t.l.c. in ethyl acetate were combined and evaporated. The residue was rechromatographed on a column of silica gel with 9:1 (v/v) chloroform-ethanol; fractions containing 6 were combined and evaporated to a syrupy residue. This residue was dissolved in a small amount of absolute ethanol, and precipitated with ether to give 0.5 g (8.6%) of 6 as an amorphous powder, $[a]_{\rm p}^{20}$ -26° (c 0.5, chloroform); n.m.r. (100 MHz, chloroformd): \(4.19\) (one-proton doublet, \(J \) 8 Hz, NH), 5.37 (one-proton doublet, \(J \) 9 Hz, H-I of GlcNAc), 5.51 (one-proton doublet, J 8 Hz, H-1 of Gal), 6.56 (6 protons, 2 OMe). \sim 8 (21 protons, AcO), 8.60, 8.63, and 8.68 (12 protons, 2 Mc₂C).

Anal. Calc. for $C_{40}H_{61}NO_{23}\cdot H_2O$: C, 51.0; H, 6.8; N, 1.5. Found: C, 51.0: H, 6.5; N, 1.2.

O-(β -D-Galactopyranosyl)-($l\rightarrow 4$)-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-($l\rightarrow 2$)-D-mannose (7). — To a suspension of 6 (380 mg) in dry methanol (12 ml) was added 0.1M sodium methoxide (1.2 ml), and the mixture was kept for 20 h at room temperature. After the addition of 0.05M H_2SO_4 (50 ml), the solution was heated for 80 min at 80°, the acid neutralized with $BaCO_3$, the suspension filtered, and the filtrate evaporated under diminished pressure. The residue was chromatographed on a column of cellulose powder (10 g) with 4:5:3 (v/v) butanol-acetonewater; fractions having R_F 0.46 in t.l.c. in the same solvent were combined and evaporated. The residue was rechromatographed on a column of activated charcoal (1 g) with 3% aqueous ethanol. The effluent (300 ml) gave 70 mg (31%) of pure 6 as a hygroscopic, amorphous powder showing on examination by t.l.c. on silica gel with

5:5:1:3 (v/v) ethyl acetate-pyridine-acetic acid-water only one spot $(R_F \ 0.30)$, $[\alpha]_D^{20} -13^\circ$ (at equilibrium, $c \ 0.86$, water).

Anal. Calc. for $C_{20}H_{35}O_{16}N \cdot 2H_2O$: C, 41.3; H, 6.8; N, 2.4. Found: C, 40.7; H, 6.2; N, 2.4.

After hydrolysis of 6 with 3M HCl for 1 h at 80°, t.l.c. on silica gel with 4:5:3 (v/v) butanol-acetone-water showed mannose, galactose, and 2-amino-2-deoxyglucose.

REFERENCES

- 1 D. B. THOMAS AND R. J. WINZLER, J. Biol. Chem., 244 (1969) 5943.
- 2 R. KORNFELD AND S. KORNFELD, J. Biol. Chem., 245 (1970) 2536-2545.
- 3 M. TOMITA AND V. T. MARCHESI, Proc. Natl. Acad. Sci. U. S. A., 72 (1975) 2964-2968.
- 4 S. KORNFELD AND R. KORNFELD, in G. A. JAMIESON AND T. J. GREENWALF (Eds.), Glycoproteins of Blood Cells & Plasma, Lippincott, Philadelphia, 1971, p. 50.
- 5 F. ZILLIKEN, P. N. SMITH, C. S. ROSE, AND P. GYÖRGY, J. Biol. Chem., 217 (1955) 79-82.
- 6 F. ZILLIKEN, P. N. SMITH, C. S. ROSE, AND P. GYÖRGY, J. Biol. Chem., 208 (1954) 299-305.
- 7 A. YA. KHORLIN, M. L. SHUL'MAN, S. E. ZURABYAN, I. M. PRIVALOVA, AND YU. L. KOPAEVICH, Izv. Akad. Nauk SSSR, Ser. Khim., (1968) 2094-2098.
- 8 E. J. C. Curtis and J. K. N. Jones, Can. J. Chem., 38 (1960) 890-895.
- 9 R. Kaifu, T. Osawa, and R. W. Jeanloz, Carbohydr. Res., 40 (1975) 111-117.
- 10 S. KORNFELD, J. ROGERS, AND W. GREGORY, J. Biol. Chem., 246 (1971) 6581-6586.
- 11 S. TOYOSHIMA, M. FUKUDA, AND T. OSAWA, Biochemistry, 11 (1972) 4000-4005.
- 12 T. OSAWA, T. TERAO, T. KAWAGUCHI, M. FUKUDA, S. TOYOSHIMA, AND T. IRIMURA, Colloq. Int. C.N.R.S., 221 (1974) 765-776.
- 13 T. IRIMURA, T. KAWAGUCHI, T. TERAO, AND T. OSAWA, Carbohydr. Res., 39 (1975) 317-327.
- 14 B. B. L. AGRAWAL AND I. J. GOLDSTEIN, Biochim. Biophys. Acta, 147 (1967) 262-271.
- 15 T. OSAWA, T. TERAO, I. MATSUMOTO, AND K. IMBE, Colloq. Int. C.N.R.S., 221 (1974) 725-731.
- 16 S. Toyoshima, T. Osawa, and A. Tonomura, Biochim. Biophys. Acta, 221 (1970) 514-521.
- 17 M. TOMITA, T. KUROKAWA, K. ONOZAKI, N. ICHIKI, T. OSAWA, AND T. UKITA, Experientia, 28 (1972) 84-85.
- 18 T. IRIMURA AND T. OSAWA, Arch. Biochem. Biophys., 151 (1972) 475-482.
- 19 S. TOYOSHIMA, Y. AKIYAMA, K. NAKANO, A. TONOMURA, AND T. OSAWA, Biochemistry, 10 (1971) 4457-4463.
- 20 P. W. Austin, F. E. Hardy, J. G. Buchanan, and J. Baddiley, J. Chem. Soc., (1963) 5350-5353.
- 21 I. MATSUMOTO AND T. OSAWA, Arch. Biochem. Biophys., 140 (1970) 484-491.
- 22 B. A. DMITRIEV, YU. A. KNIREL, AND N. K. KOCHETKOV, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 411-416.